کاربردهای توابع پایه ای شعاعی در تقریب ‏جواب معادلات دیفرانسیل

پایان نامه
چکیده

تحقیقات اخیر روی روشهای عددی‏، بر ایده استفاده از روشهای بدون شبکه‎{meshfree methods}‎ برای حل عددی معادلات دیفرانسیل با مشتقات جزئی تاکید‏ می کند. یکی از ویژگی های رایج همه روشهای بدون شبکه، توانایی آنها در ساخت تقریب تابع، تنها با استفاده از اطلاعاتی در یک مجموعه از داده های پراکنده می باشد. تعدادی از روشهای بدون شبکه عبارتند از: روش هیدرودینامیکهای ذره ی هموار‎{smooth particle hydrodynamics method} ‎، روش المان پراکنده‎{diffuse element method} ‎، روش گلرکین المان آزاد‎{element-free galerkin method} ‎، روش هسته باز سازنده‎{reproducing kernel particle method} ‎، روش افراز واحد‎{partition of unity method} ‎، روش {hp-clouds} ، روش پترو-گلرکین موضعی بدون شبکه{meshless local petrov–galerkin method} ، روش تفاضلات متناهی ‎{ ‎f‎inite differences} ‎، روش پترو-گلرکین موضعی بدون شبکه مستقیم‎{direct meshless local petrov–galerkin method} ‎} و روش معادله انتگرال مرزی تقابل دوگانی ‎{dual reciprocity boundary integral method} ‎.‎ در چند سال اخیر گروه دیگری از روشهای بدون شبکه که بر اساس توابع پایه ای شعاعی تولید می شوند، برای حل عددی معادلات دیفرانسیل با مشتقات جزئی توجه بیشتری را به خود جلب کرده اند. در ابتدا توابع پایه ای شعاعی برای درونیابی داده ها ‏در توابع چندمتغیره مطرح شدند. به هر حال، ویژگی بدون شبکه بودنشان انگیزه ای شد تا محققان از آنها برای حل عددی معادلات دیفرانسیل با مشتقات جزئی استفاده کنند. کانزا‎{e.‎ ‎j‎. ‎kansa} ‎، اولین کسی بود که از این توابع برای حل معادلات دیفرانسیل با مشتقات جزئی استفاده کرد ‏و نام روش خود را توابع پایه ای شعاعی سراسری‎‏‎globally radial basis function‎}‎} نامید‎‎. چون ماتریس ضرایب روش کانزا متقارن نبود لذا فشیئور‎{g.‎ ‎e‎. ‎fasshauer} ‎ روش نوع هرمیت را برای تضمین تقارن ماتریس ضرایب ارائه کرد. ماتریس ضرایب متقارن، حل پذیری معادلات خطی مربوطه را تضمین می کند. ‎‏روش‎ های کانزا و فشیئور به طور مستقیم عبارتی از تقریب تابع بوسیله توابع پایه ای شعاعی را در معادلات دیفرانسیل با مشتقات جزئی جایگزین می کنند. اما شو ‎{shu}‎‎‎‏ و همکاران در سال 2003‏ میلادی نوع دیگری از روش های مبتنی بر ‎{rbf}‎‏ را با بهره گیری از ایده انتگرال گیری دیفرانسیلی {differential quadrature}‎‎مطرح کردند ‏و نام آن را انتگرال گیری دیفرانسیلی بر اساس توابع پایه ای شعاعی برگزیدند. بر خلاف روش کانزا این روش مشتق تابع در یک نقطه را بوسیله ترکیب خطی از همه مقادیر تابع در کل دامنه تقریب می زند. هر دو روش در کنار مزیت های زیادی که دارند، دارای معایبی نیز می باشند که استفاده عملی از آنها را دچار مشکل کرده است. عددحالت ماتریس درونیاب این روش ها با افزایش تعداد نقاط گرهی به سرعت رشد می کند. همچنین، هزینه محاسبات این روش برای مسائل بزرگ بسیار زیاد است. برای رفع این مشکلات تکنیکهای متعددی ارائه شد که یکی از آنها استفاده از روشهای موضعی براساس توابع پایه ای شعاعی می باشد. یکی از روشهای موضعی، روش انتگرالگیری دیفرانسیلی موضعی براساس توابع پایه ای شعاعی می باشد که توسط خود شو در همان سال 2003 ارائه شد. این روش در واقع مشتق تابع در یک گره بصورت یک ترکیب خطی از مقادیر تابع در گرههای مجاور گره مورد نظر بیان می شود. همچنین برای کاهش عدد حالت ماتریس درونیاب اخیراً خانم پازوکی به همراه شابک‎‎{schaback} ‎‎‏ تکنیک تغییر پایه را مطرح کردند‎‎‎‎‎ . در ادامه این فصل به بیان تعاریف اولیه می پردازیم. در فصل دوم جنبه های مختلف توابع پایه ای شعاعی برای تقریب تابع را مورد بررسی قرار می دهیم. در فصل سوم اصول روش های مبتنی بر توابع پایه ای شعاعی برای حل معادله دیفرانسیل با مشتقات جزئی ارائه می گردد. پیاده سازی این روش ها برای حل عددی معادله ساین گوردون‎‎{sine-gordon}‎‎‏ در فصل چهارم بررسی و نتایج عددی تحلیل می شوند. نتیجه گیری در فصل پنجم مطرح می شوند.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد توابع پایه شعاعی در تقریب جواب معادلات دیفرانسیل با مشتقات جزئی

در دو دهه اخیر برای تقریب توابع چند متغیره معمولا از توابع پایه شعاعی استفاده می کنند توابع پایه شعاعی و مشتقاتش حالت کلاسیکی دارد. این توابع با استفاده از گرهها براحتی بدست می آیند در این پایان نامه دقت و کارایی این توابع را در تقریب توابع چند متغیره توضیح می دهیم. و بعد از این توابع برای تقریب جواب pde به روش هم محلی استفاده می کنیم. و کاربرد توابع پایه شعاعی در تقریب جواب pde را با fem مقایس...

15 صفحه اول

روش توابع پایه ای شعاعی برای حل معادلات دیفرانسیل تاخیری

در این پایان نامه، روش توابع پایه ای شعاعی برای حل معادلات دیفرانسیل تاخیری یا تفاضلی تعمیم داده شده است. روش مذکور بر روی مثال های متعدد مورد آزمایش قرار گرفته و نتایج نشان می دهد که روش پیشنهاد شده کارآمد و ساده می باشد. هم چنین روش هم مکانی تیلور را معرفی می کنیم و به مقایسه روش توابع پایه ای شعاعی با روش موجود می پردازیم. واژه های کلیدی: روش توابع پایه ای شعاعی، معادله ...

15 صفحه اول

ساختن روش‌های تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه

In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...

متن کامل

جواب های تقریبی برای معادلات انتگرال و اینتگرو-دیفرانسیل به کمک روش توابع پایه شعاعی

در این پایان نامه، یک روش هم¬مکانی برای حل معادلات انتگرال و اینتگرو-دیفرانسیل خطی بیان می¬کنیم. این روش بر پایه¬ی توابع پایه¬ای شعاعی و به¬کار بردن صفرهای چند¬جمله¬ای لژاندر انتقال یافته به عنوان نقاط هم¬مکانی است. برای تأیید دقت و کارآمدی روش، نتایج عددی با جواب واقعی مقایسه شده¬اند.

15 صفحه اول

روش هم محلی چندجمله ای های لژاندر برای تقریب جواب معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی

هدف اصلی در این مقاله حل معادلات انتگرال- دیفرانسیل فردهلم خطی با تأخیر زمانی از مراتب بالا است. روش مبتنی بر بسط لژاندر با استفاده از نقاط هم محلی گاوس- لژاندر می باشد. در این روش سری لژاندر قطع شده جواب معادله را در نظر گرفته و معادله انتگرال- دیفرانسیل خطی و شرایط داده شده را به یک معادله ماتریسی تبدیل می کنیم، سپس با استفاده از نقاط هم محلی گاوس- لژاندر، معادله ماتریسی تبدیل به یک دستگاه از...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023